Approach to dose definition to the gross tumor volume for lung cancer with respiratory tumor motion
نویسندگان
چکیده
The purpose of this study was to validate the dose prescription defined to the gross tumor volume (GTV) 3D and 4D dose distributions of stereotactic radiotherapy for lung cancer. Treatment plans for 94 patients were generated based on computed tomography (CT) under free breathing. A uniform margin of 8 mm was added to the internal target volume (ITV) to generate the planning target volume (PTV). A leaf margin of 2 mm was added to the PTV. The prescription dose was defined such that 99% of the GTV should receive 100% of the dose using the Monte Carlo calculation (iPlan RT Dose(TM)) for 6-MV photon beams. The 3D dose distribution was determined using CT under free breathing. The 4D dose distribution plan was recalculated to investigate the effect of tumor motion using the same monitor units as those used for the 3D dose distribution plan. D99 (99% of the GTV) in the 4D plan was defined as the average D99 in each of the four breathing phases (0%, 25%, 50% and 75%). The dose difference between maximum and minimum at D99 of the GTV in 4D calculations was 0.6 ± 1.0% (range 0.2-4.6%). The average D99 of the GTV from 4D calculations in most patients was almost 100% (99.8 ± 1.0%). No significant difference was found in dose to the GTV between 3D and 4D dose calculations (P = 0.67). This study supports the clinical acceptability of treatment planning based on the dose prescription defined to the GTV.
منابع مشابه
Respiratory motion effect on tumor and normal tissue doses in patients with lung cancer, treated with Intensity Modulation Radiation Therapy and Three Dimensional Conformal Radiation Therapy.
Introduction: The aim of this study is to investigate the effect of respiratory motion during radiation therapy in patient with lung cancer and comparison of dosimetric parameters between Intensity modulation radiation therapy and three-dimensional conformal radiotherapy in lung cancer. Materials and Methods: Two CT scan was performred for each pati...
متن کاملDynamic MLC Tracking Using 4D Lung Tumor Motion Modelling and EPID Feedback
Background: Respiratory motion causes thoracic movement and reduces targeting accuracy in radiotherapy. Objective: This study proposes an approach to generate a model to track lung tumor motion by controlling dynamic multi-leaf collimators. Material and Methods: All slices which contained tumor were contoured in the 4D-CT images for...
متن کاملImpact of PET - CT motion correction in minimising the gross tumour volume in non-small cell lung cancer
AbstractObjective: To investigate the impact of respiratory motion on localization, and quantification lung lesions for the Gross Tumour Volume utilizing an in-house developed Auto3Dreg programme and dynamic NURBS-based cardiac-torso digitised phantom (NCAT). Methods: Respiratory motion may result in more than 30% underestimation of the SUV values of lung, liver and kidney tumour lesions. The m...
متن کاملAutomatic Segmentation of the Gross Tumor Volume in Prostate Carcinoma Using Fuzzy Clustering in Gallium-68 PSMA PET/CT Scan
Introduction: Modern radiotherapy (RT) techniques allow a highly precise deposition of the radiation dose in tumor. So, high conformal tumor doses can be reached while sparing critical organs at risk. Materials and Methods: This study was conducted in three phases. In the first phase; Fourteen patients with primary or recurrent prostate cancer receive Gallium-...
متن کاملConcurrent chemoradiotherapy in locally advanced non-small cell lung cancer: a retrospective analysis of the correlation between radiotherapy-related factors and tumor response
Background: To determine which radiotherapy parameters are associated with the tumor response of locally advanced non-small cell lung cancer (NSCLC) patients undergoing concurrent chemoradiotherapy. Materials and Methods: Thirty one patients with IIIA/IIIB NSCLC underwent chemoradiotherapy with a median dose of 63 Gy. On our actual treatments, we made radiotherapy planning to cover the planning...
متن کامل